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abstract: Amphibians exhibit the greatest diversity of reproductive
strategies of all tetrapod vertebrates. While authors have traditionally
attributed the evolution of these strategies to factors such as complex
topography, unpredictable larval environments, and predation on
larvae and eggs, support for any of these hypotheses has been limited.
Importantly, most authors have ignored parasites, including unicel-
lular pathogens and multicellular parasites, as selective agents capable
of influencing amphibian evolution. Insights in disease transmission,
amphibian immunity, and their interaction with various life histories
require that we consider parasites to be selective pressures in our
exploration of the evolution of amphibian reproductive strategies. I
review recent findings and describe how these principles converge
to form a novel conceptual hypothesis for the evolution of alternative
reproductive strategies in amphibians. I offer some specific predic-
tions and recommend that parasites be considered with other selec-
tive pressures when constructing formal, falsifiable hypotheses during
evaluative studies of amphibian reproductive behavior.

Keywords: anurans, chytrid, disease, iridovirus, life history, sala-
manders.

The ancestral life history in recent amphibians (i.e., Lis-
samphibia) is hypothesized to have been biphasic, with an
aquatic larval period and a terrestrial adult stage (Duell-
man and Trueb 1986; Milner 1993; Hanken et al. 1997),
a strategy that remains widespread in extant amphibians
(table 1). However, amphibians exhibit the greatest di-
versity in reproductive strategies of all tetrapod vertebrates
(Haddad and Prado 2005), with alternative reproductive
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strategies that deviate from the ancestral biphasic mode
and become increasingly terrestrial, including numerous
independently derived forms of terrestrial oviposition, nest
brooding, egg carrying, and direct development that by-
passes the aquatic larval stage altogether (table 1). Tra-
ditionally, pressures such as complex topography, unpre-
dictable larval environments, and predation on larvae and
eggs have been suggested as promoting the radiation of
amphibian reproductive strategies into terrestrial environ-
ments. Importantly, parasites as selective forces in am-
phibian evolution have been largely ignored (but see For-
ester 1979 and citations therein for discussion of terrestrial
nest brooding in plethodontid salamanders), leading to an
incomplete evaluation of multiple competing hypotheses
(Platt 1964). Here, I define parasites to include unicellular
disease-causing pathogens and multicellular endo- and ec-
toparasites. I argue that parasites must be considered in
the evolution of amphibian reproductive behaviors for at
least three key reasons. First, the vast majority of known
amphibian parasites rely on aquatic infective stages for
transmission and reproduction. Second, the ancestral bi-
phasic life history of amphibians that requires aquatic re-
production increases host contact rates and promotes par-
asite persistence in otherwise dispersed terrestrial
populations. Third, larval and metamorphosing amphib-
ians have diminished immunities compared to adults,
making these stages more susceptible to parasite-driven
mortality. The combination of these factors creates pre-
dictable patterns of mortality that correspond with am-
phibian reproductive strategies and life-history traits, and
it suggests that we more carefully consider parasites as
potential selective agents in amphibian evolution.

Common Amphibian Parasites

Previous authors have summarized the role of parasites in
amphibian mortalities and declines (Carey et al. 1999,
2003; Daszak et al. 1999, 2003), but it is important here
to highlight aspects that relate to parasite transmission.
Most amphibian parasites that cause high rates of mortality



Table 1: Distribution of reproductive strategies in amphibian families of the orders Anura and Caudata

Reproductive strategy

Anura Caudata

Al Ar Ac At Bo Br Bu Ce De Di He Hm Hl Hp Le Lp Ma Me Mi My Na Pb Pd Pi Ra Rh Rd Rp So Ab Ap Cr Dc Hn Pl Pr Ry Sa Si

Egg deposition strategy:

Ponds and streamsa x x x x x x x x x x x x x x x ? x x x x x x x x x x x x x x x x

Terrestrial pools x x x x

Terrestrial on ground x x x x x x x x x x x x x x x x x x

Arboreal pools x x x x x x x x

Attached arboreally x x x x x x x x x

Carried by parent until hatched x x x x

Larval feeding strategy:

Exotrophic larvaea x x x x x x x x x x x x x x x x x x ? x x x x x x x x x x x x x x x x

Endotrophic larvae x x x x x x x x x x x x x x x

Larval habitat:

Aquatica x x x x x x x x x x x x x x x x x x ? x x x x x x x x x x x x x x x x x

Confined to nests x x x x x x x x x x

Carried by parent through

metamorphosis x x x x x x

Direct development (no larvae) x x x x x x x x x x x x x

Ovoviviparity x x x

Viviparity x x

Paedomorphosis:

Facultative x x x x x

Obligate x x x x x

Note: The taxonomy used here follows Frost (1985). Recent studies have suggested a revised taxonomy based on molecular evidence, and these newer changes are noted by Frost et al. (2006).

Categories are not mutually exclusive. The life history of the recently described monophyletic Nasikabatrachidae is largely unknown but is presumed to be similar to that of other burrowing frogs that

follow an ancestral biphasic life-history strategy (Biju and Bossuyt 2003). , , , , ,Al p Allophrynidae Ar p Arthroleptidae Ac p Ascaphidae At p Astylosternidae Bo p Bombinatoridae Br p
, , , , , , , , ,Brachycephalidae Bu p Bufonidae Ce p Centrolenidae De p Dendrobatidae Di p Discoglossidae He p Heleophrynidae Hm p Hemisotidae Hl p Hylidae Hp p Hyperoliidae Le p

, , , , , , , , ,Leiopelmatidae Lp p Leptodactylidae Ma p Mantellidae Me p Megophryidae Mi p Microhylidae My p Myobatrachidae Na p Nasikabatrachidae Pb p Pelobatidae Pd p Pelodytidae Pi p
, , , , , , , , ,Pipidae Ra p Ranidae Rh p Rhacophoridae Rd p Rhinodermatidae Rp p Rhinophrynidae So p Sooglossidae Ab p Ambystomatidae Ap p Amphiumidae Cr p Cryptobranchidae Dc p

, , , , , , .Dicamptodontidae Hn p Hynobiidae Pl p Plethodontidae Pr p Proteidae Ry p Rhyacotritonidae Sa p Salamandridae Si p Sirenidae
a Ancestral life-history mode.



Evolution of Alternative Reproductive Strategies 795

use an aquatic stage for transmission or are constituted of
viruses that contaminate aquatic environments and are
readily transmissible from infected host animals (Davidson
et al. 2003; Brunner et al. 2004). For example, amphibian
chytridiomycosis is caused by the recently described chy-
trid fungus Batrachochytrium dendrobatidis, and the in-
fective stage is an aquatic, flagellated zoospore (Longcore
et al. 1999). Viruses of the family Iridoviridae are another
major amphibian parasite, and transmission of iridovi-
ruses occurs aggressively through exposure to infected an-
imals or water, resulting from a high rate of aquatic trans-
missibility (Jancovich et al. 2001). Both the chytrid fungus
and the iridoviruses cause high levels of morbidity and are
particularly lethal to metamorphosing animals and larvae,
respectively (Collins et al. 2003; Brunner et al. 2004). Ad-
ditionally, endoparasitic helminths that afflict anurans typ-
ically require aquatic environments for the development
and transmission of infective stages or to reach primary
or secondary hosts (Johnson and Sutherland 2003; Brooks
et al. 2006). Thus, the increased risk of infection and mor-
tality that aquatic environments pose could select for re-
duced dependency on aquatic environments, reducing the
duration of aquatic exposure in favor of increased terres-
triality.

Aquatic-Driven Parasite Dynamics in
Amphibian Populations

For many amphibians with generalized biphasic life his-
tories, juvenile and adult animals lead solitary lives dis-
persed in terrestrial landscapes and may reach high den-
sities only during breeding aggregations at aquatic sites
(as with many bufonid, ranid, and hylid frogs). In general,
whereas parasites may intermittently afflict populations
and cause individual mortalities, parasites cannot become
widely established in host populations unless host contact
rates are high (Anderson and May 1978, 1979; May and
Anderson 1978, 1979; McCallum et al. 2001), a scenario
that typically arises during aquatic reproduction and in
larval amphibian stages. Daszak et al. (1999) and Brunner
et al. (2004) have also determined that the division of an
amphibian life history into two distinct stages, aquatic and
terrestrial, sustains parasites by creating intraspecific host
reservoirs that reinfect naive life-history stages, providing
an exception to typical host contact–driven dynamics by
allowing parasite persistence even in small populations.
Therefore, a biphasic life history with aquatic reproduction
promotes increased parasite transmission and can support
a persistent host-parasite dynamic, whereas terrestrial life
histories that lack aquatic reproduction may not, although
parasite dynamics in terrestrial amphibians have received
less attention. Iridovirus epidemics have been shown
to cause local declines of aquatic-breeding amphibians

(Brunner et al. 2004) but have not been reported to cause
declines in species with alternative modes of reproduction
(see Green et al. 2002 for list of affected species). Clearly,
changes from an aquatic reproductive strategy to alter-
native strategies that liberate animals from aquatic-terres-
trial linkages could limit mortality incurred from aquatic
parasites. Alternatively, an increase in larval immunity
could reduce host mortality and limit parasite dynamics,
but this may be unattainable for many species because of
the physiological constraints imposed by extensive devel-
opment of new tissues during metamorphosis (see below).

The Ontogeny of Amphibian Immunity

Amphibians exhibit complex immunity with forms of both
innate and adaptive immunity. However, there is a distinct
ontogenetic shift in the robustness of their immune de-
fenses (Du Pasquier 1973; Du Pasquier et al. 1987), and
metamorphosis is a period of particular immune system
vulnerability (reviewed in Rollins-Smith 1998). For ex-
ample, natural killer (NK) cells provide a method of innate
immunity by destroying virus-infected cells and by de-
tecting and destroying tumor cells, but tadpole NK cells
are capable of detecting or attacking tumor cells from
allogenic animals only weakly, compared to the aggressive
response in adults (Horton et al. 1996). There is also grow-
ing experimental evidence that many amphibians produce
antimicrobial peptides in their dermal mucous that limit
infection from environmental contact with pathogens
(Chinchar et al. 2001; Rollins-Smith et al. 2002a, 2002b,
2003). These peptides are composed of 20–46 amino acids,
and their effectiveness and potency vary significantly with
small substitutions in the amino acid sequence (Carey et
al. 1999; Rollins-Smith et al. 2003). Importantly, the ability
of many frogs to synthesize these antimicrobial peptides
does not appear to develop until after metamorphosis
(Clark et al. 1994; Reilly et al. 1994), indicating that the
larval stage may be a period of reduced antimicrobial de-
fense. Additionally, major histocompatibility complex
(MHC) antigens are normally absent or weak in devel-
oping amphibian larvae compared to those of adults (Flaj-
nik et al. 1986, 1987; Salter-Cid et al. 1998). The onto-
genetic changes in immunity that amphibians experience
is further exemplified by the dramatic loss of lymphocytes
that occurs during metamorphic climax and in tadpoles
undergoing hormone-induced precocious metamorphosis
(Cohen et al. 1985; Flajnik et al. 1987; Rollins-Smith 1998).

Evidence of the ontogenetic change in anuran immunity
is widely reported in laboratory studies of the African
clawed frog Xenopus laevis (e.g., Cohen et al. 1985; Flajnik
et al. 1986, 1987), but this pattern has also been shown
in studies of the ontogeny of allograft rejection in the
bullfrog Rana catesbeiana (Hildemann and Haas 1959;
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Baculi and Cooper 1970), the northern leopard frog Rana
pipiens (Bovbjerg 1966), and the European common frog
Rana temporaria (Plytycz 1981). The diminished immunity
of larval and metamorphosing amphibians compared to
adult immunity has also been demonstrated among cau-
dates in controlled studies of the ontogeny of allograft
rejection in tiger salamanders Ambystoma tigrinum (Cohen
1969) and alpine newts Triturus alpestris (Plytycz et al.
1982), as well as in ontogenetic comparisons of mitogen
activity in the axolotl Ambystoma mexicanum (Salvadori
and Tournefier 1996), providing additional evidence that
the observed pattern is widespread in the Amphibia. Pre-
sumably, a strong larval immunity would result in auto-
immune attacks on newly developing somatic tissues that
form during amphibian metamorphosis, thus necessitating
the observed immune suppression that occurs before and
during metamorphosis (Cohen et al. 1985; Flajnik et al.
1987).

Numerous field studies confirm that larval and meta-
morphosing amphibians are particularly susceptible to
parasites because parasites often cause greater infection
and mortality in these stages than in adults. For example,
Berger et al. (1998) found that newly metamorphosed frogs
are highly susceptible to chytridiomycosis, and in the Kai-
bab Plateau, Arizona, 90% of recently metamorphosed sal-
amanders were infected with the A. tigrinum virus, or ATV
(Collins et al. 2003). Additionally, the analysis of 64 am-
phibian mortality events in the United States from 1996
to 2001 indicated that iridoviruses and the chytrid fungus
preferentially affected late-stage larvae and recently meta-
morphosed animals, respectively (Green et al. 2002). In
another study, researchers experimentally infected Xenopus
frogs with the iridovirus FV3 and discovered that tadpoles
exhibited high susceptibility to the virus, in contrast to
adults (Gantress et al. 2003). Infected tadpoles experienced
80% morbidity over 2 months, and the researchers attrib-
uted the high larval morbidity to a lack of MHC class I
expression as determined by a poor ability to detect viral
antigens in the tadpoles.

Evolution of Alternative Reproductive Strategies

Amphibians with exotrophic aquatic larvae are able to
exploit high levels of productivity in aquatic systems,
which enables rapid growth (Wilbur 1980). However, op-
timal environments are only those that maximize growth
while minimizing mortality (Werner 1986). When the ratio
of mortality to growth in the aquatic stage exceeds that
of the terrestrial stage, there is selective pressure to shorten
the larval period (Callery et al. 2001). Over time, contin-
uous reductions of the larval period have been suggested
to lead to direct development (Callery et al. 2001). Alter-
natively, intraspecific variation in oviposition sites with

failures of clutches deposited in parasite-rich aquatic sites
may favor the development of alternative oviposition strat-
egies, such as those seen in many mantellid and dendro-
batid frogs that use increasingly isolated and terrestrial
pools for larval development (table 1). Waterborne par-
asites and reduced immunity in larval and metamor-
phosing amphibians provide ample opportunity for es-
calating mortality in the aquatic stage, which should favor
increased terrestriality. Nevertheless, researchers often fail
to consider parasites as selective forces capable of con-
tributing to the evolution of the great diversity of repro-
ductive strategies used by amphibians.

Predictions and Suggested Studies

There are several lines of inquiry that can expand our
understanding of the role of parasites in the evolution of
alternative reproductive strategies in amphibians. For ex-
ample, it is not known whether direct-developing am-
phibians that forgo metamorphosis have immunities sim-
ilar to those of their metamorphic counterparts and simply
benefit from an alternative life history that makes them
less ecologically susceptible to parasitism, or whether their
immunities differ from those of biphasic counterparts (Al-
tig and Crother 2006). Additionally, under the premise
that parasites promote increasingly terrestrial life histories,
amphibians that have close contact with parasites yet
maintain aquatic paedomorphic life histories should have
robust MHC I and II expression and competent innate
and adaptive immune responses across their ontogeny, in
contrast to species with biphasic life histories. Much could
be gained from comparative studies of the parasitology
and immunology of paedomorphic salamanders such as
sirenids, cryptobranchids, and amphiumids (table 1). One
might also predict that aquatic anurans, such as adult Af-
rican clawed frogs Xenopus sp., have more robust immune
systems than their biphasic counterparts, which live life
as terrestrial adults. Interestingly, Xenopus laevis is believed
to be the source host of the emergent chytrid fungus, and
wild X. laevis rarely suffer clinical effects from chytrid
infection or experience die-offs (Weldon et al. 2004). Com-
parative immunological studies such as the ones proposed
above have not been conducted, leaving incredible op-
portunities for study.

We must also clarify the phylogenetic distribution and
abundance of parasites in relation to the distribution of
alternative life histories among amphibians. To this end,
there is a critical need to conglomerate reports and distri-
butions of verified parasites in amphibian populations. In-
vestigators should ensure that they examine field-collected
study animals when possible or construct a standing ar-
rangement with facilities or researchers who might be willing
to assist in such endeavors, such as the USGS National
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Wildlife Health Center, San Diego Zoo’s Wildlife Disease
Laboratory, or the Consortium for Conservation Medicine.
Optimally, the discovery of novel parasites or expansions
to new host populations should be published and made
publicly available. A database of known amphibian parasites
and their distributions would aid both conservation sci-
entists concerned about global amphibian declines and bi-
ologists interested in ecological and evolutionary questions.
Ideally, future work could elaborate on the prevalence and
distribution of parasites in closely related species that differ
in reproductive modes and life histories, allowing a properly
controlled phylogenetic analysis that is not currently pos-
sible. Specifically, one may predict that parasite occurrences
within phylogenies are greater in species with biphasic life
histories than in close relatives that use alternative repro-
ductive modes. Recently, a study by Brooks et al. (2006)
demonstrated that parasite richness is greater in host frog
species that spend more time in aquatic habitats than in
those that do not, a pattern consistent with such predictions.

A final suggested topic for additional study includes the
observation of reproductive behaviors and community
structure before and after unintentional exposure to new
or emergent parasites. The introduced chytrid fungus has
spread through Central America, leaving behind a wake
of decimated amphibian populations (Lips et al. 2006). In
nearly all reports of chytrid-related declines, amphibians
with aquatic larvae and those that inhabit riparian habitats
have declined. For example, Lips (1999) reported the de-
cline of two riparian frog species, Eleutherodactylus emcelae
and Eleutherodactylus rugulosus, in Las Tablas, Costa Rica,
whereas two sympatric congeners with terrestrial egg de-
position and direct development remained unaffected
(Eleutherodactylus caryophyllaceus and Eleutherodactylus
gollmeri). Such changes in community structure that result
from interspecific variation in reproductive strategies and
the presence of an aquatic parasite may signal the possible
evolutionary outcomes expected for species that exhibit
intraspecific variation in reproductive behaviors, with ter-
restrial or arboreal breeding being favored in the presence
of aquatically transmitted parasites. More studies that doc-
ument changes in community structure or intraspecific
reproductive behaviors following the progression of chy-
trid through Central and South America could add sig-
nificantly to our understanding of parasites as selective
forces.

Conclusions

Evolutionary fitness is determined as the successful pro-
duction of viable offspring, and any behaviors, morphol-
ogies, or physiologies that maximize an individual’s pro-
duction of viable offspring compared to that of its
conspecifics should be favored. However, evolution is often

a conservative process, and the development of elaborate
or costly behaviors will not occur if the current repro-
ductive methods are sufficient for maintaining relative fit-
ness (Lehtinen and Nussbaum 2003). The deposition of a
single clutch of numerous small eggs into ponds where
aquatic larvae feed and develop is hypothesized to have
been the ancestral life-history strategy for amphibians
(Duellman and Trueb 1986). The ability to exploit high
levels of aquatic productivity through the preservation of
aquatic larvae presents a strong counterselective force
likely to be responsible for the maintenance of biphasic
life histories still common in many amphibians (table 1).
Nonetheless, adaptive radiation in amphibians has pro-
duced reproductive strategies that are incredibly diverse
and phylogenetically widespread (Lehtinen and Nussbaum
2003; Haddad and Prado 2005). The prevalence of para-
sites in aquatic habitats, the host-parasite dynamics sup-
ported by biphasic life histories, and the ontogeny of am-
phibian immunity collectively indicate that parasites may
play a prominent role in amphibian life-history evolution,
despite having been largely ignored in previous treatments
of amphibian evolution. While it is unlikely that parasites
are solely responsible for the evolution of alternative re-
productive strategies in amphibians, the role of parasites
in amphibian evolution must be considered along with
other hypotheses when constructing formal, falsifiable pre-
dictions during evaluative studies of amphibian behavior.
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A marsupial frog, Gastrotheca cornuta, carries its eggs in a dorsal pouch. Photograph by Scott Connelly, University of Georgia.


